
Mirza Krak
Embedded Solutions Architect

Mender.io

Integrate IoT cloud analytics and over-the-air (OTA) updates with Google and Mender.io

● Over-the-air software updates for IoT and Mender introduction
● Yocto Project introduction
● Google IoT Core and Cloud IoT introduction
● Device authentication integration between Cloud IoT and Mender

Session overview

● Mirza Krak

○ 8 years in Embedded Linux
■ U-boot and Linux kernel
■ Yocto/Buildroot

○ mirza.krak@northern.tech

About me

● mender.io

○ Open-source update manager for
embedded devices

○ Open source (Apache License, v2)
○ Supports a variation of update styles

■ Dual A/B rootfs layout
■ Update Modules (beta)

○ Remote deployment management (server)
○ Under active development

https://northern.tech/careers

We are hiring

Internet of Things (IoT)

The Internet of things (IoT) is the extension of
Internet connectivity into physical devices
and everyday objects. Embedded with
electronics, Internet connectivity, and other
forms of hardware (such as sensors), these
devices can communicate and interact with
others over the Internet, and they can be
remotely monitored and controlled

Source: WikipediaIt means taking all the things in the world and
connecting them to the internet

Connected devices must be remotely updatable

● There will be bugs, vulnerabilities
○ 1-25 per 1000 lines of code*
○ Botnets w/ millions of devices:

Mirai, Hajime, Brickerbot

● … and new features

● … after device is deployed to the field

*Source: Steve McConnell, Code Complete

Source: Ars Technica

IoT devices are in a harsh environment

● Remote
○ Expensive to reach physically

● Long expected lifetime
○ 5 - 10 years

● Unreliable power
○ Battery
○ Suddenly unplugged

● Unreliable network
○ Intermittent connectivity
○ Low bandwidth
○ Insecure

What can
go wrong?

Criteria for IoT software update management

● Robust and secure
● Atomic installation & consistent across

devices
● Secure transport and codesigning
● Integrates with existing development

environment
● Easy to get started
● Bandwidth consumption
● Downtime during update

What can
go wrong?

 General IoT update manager workflow

Detect update
(secure channel)

Download
(secure channel)

Integrity
(e.g. checksum)

Authenticate
(e.g. signature)

DecryptExtract

Install Failure recovery
(e.g. roll back)

Compatibility
check

Sanity checks
Post-install

actions

Pre-install
actions

Must-have

Environment-specific

(Re)Start*

*E.g. reboot, restart service, start container

Mender provides both client and server

● Client-server model
○ Apache 2.0
○ Mender provides both, including web UI
○ No need to “glue” several projects
○ Server can integrate with 3rd party

clients through its REST API
● Supports updating

○ File system images
○ Update Modules (beta)

■ Application updates
■ Containers
■ nd more

Mender uses a dual A/B system layout

● Very robust
○ Fully atomic and consistent

● Integrates well
○ OS, kernel, apps unchanged
○ Needs bootloader “flip” support
○ Partition layout, requires 2x

rootfs storage
● Fairly short downtime (minute)

○ 1 reboot

OS A
(active)

Bootloader

Device/System

OS B
(inactive)

Kernel Kernel

● Mender deploys to inactive partition, then
reboots into it

○ Common design for IoT
○ Used in newer Androids (‘N’ and later)

Mender - server

Mender Devices

Users

API Gateway
TCP 443

DeviceAdm

DeviceAuth

UserAdm

Inventory

Deployments

GUI

Conductor

Storage
Proxy

TCP 9000
Minio

MongoDB

ElasticSearch

Redis

Filesystem

external clients stateless application layer persistent storage

● Microservices
● Only port 433 and 9000
● RESTful API

○ Device API
○ Management API

/api/management/v1/deployments

/api/management/v1/admission

/api/management/v1/devauth/

….

https://docs.mender.io/apis/overview

 Yocto Project is a Linux build system

“It's not an embedded Linux
Distribution, It creates a custom one
for you.”

● Structured way to build a Linux
distribution from source, using
software “meta layers”

● Flexible and very portable
between hardware
○ Requires some learning

● Probably the most popular Linux “OS” for
IoT devices
○ Major board manufacturers provide

BSPs as Yocto meta layers

● Mender provides meta-mender for
integrating the Mender client

● Google provides meta-gcp-iot for integrating
Mender and MQTT telemetry application

https://github.com/mendersoftware/meta-mender-community
https://github.com/GoogleCloudPlatform/community/tree/master/tutorials/cloud-iot-mender-ota/image/meta-gcp-iot

Google IoT Core

“Cloud IoT Core is a fully managed service that allows you to easily and securely
connect, manage, and ingest data from millions of globally dispersed devices”

● MQTT and HTTP protocols
● scales automatically in response to real-time changes
● industry-standard security protocols protect your data.

Google Cloud IoT (example)

Google IoT Core

Protocol bridge

MQTT protocol endpoint
Automatic load balancing

Global data access with
Pub/Sub

Device manager

Configure individual devices
Update and control devices
Role level access control
Console and APIs for device
deployment and monitoring

Device authentication is complex

● To securely authenticate to cloud services, devices need an identity and credential
tuple

○ Typically a serial number and public/private keypair
● Different cloud services use different identity and credential tuples
● Result: Identity and key management becomes very complex and error-prone

Device authentication in Google IoT Core

Device identity is based on an asymmetric key-pair of
two supported formats:

○ RSA 256 public key wrapped in a X.509v3
certificate

○ Elliptic curve (ECDSA) algorithm using
P-256 and SHA-256 [more efficient,
better suited for small devices]

Credentials may optionally have an expiration
timestamp

A device can have up to 3 credentials associated with
it at a time, allowing for rotation

The service should never need the private key

The sequence shown here is only one way to handle
device provisioning

Device authentication in Google IoT Core

MQTT/HTTP
 broker

Verify JWT signature with
public key

Run API Script with
public key filesCreate JWT

Secure Sign
JWT

Save device
public key

association

Device Key pair securely
generated in

Microchip ATECC608A or NXP
A71CH

Provisioner Device manager

OK

Create device (deviceid, public key)

OK

Connect (device id, signed JWT)

Connected

Secure element w/
private keys soldered

to the device

Public keys
passed as file

Device authentication in Mender

Unique
client

identity

Unique
client

key pair

Mender
client

IoT device

Trusted
server

cert

Root
certs

Mender server

Mender
config Trusted

server
cert

API
gateway
(nginx)

RSA key unique to this client. Used to sign client
identity in auth requests. Will be tied to client
identity in server.

TLS (https)

1. Auth request:
 client identity, signed(client identity)

2. Reject (if client unknown/pending) or issue
 JWT auth token to client.

 Clients get JWT auth token if:

A. They are preauthorized, or
B. Accepted (once pending) by user/script

Identity attributes (key-value). Identity scheme is
customizable, typically serial number or MAC
address is used. More info: Identity in Mender

https://docs.mender.io/client-configuration/identity

Device authentication integration workflow

Device authentication integration workflow

Device authentication integration workflow

Device authentication integration workflow

Device authentication integration workflow

Integration based on common private key

Identity tied to Private Key
(secure on disk or in secure element)

MQTT Client Mender Agent

Mender OTA
Server

Google Cloud
IoT Core

OTA and Firmware ManagementTelemetry and Data plane

Reference integration

Step-by-step tutorial available

bit.ly/mender-google

https://bit.ly/mender-google

Thank you

Questions?

