
The ultimate guide to software updates on embedded
Linux devices

foss-north 2018 Mirza Krak

Session Overview

● Intro
● Basics
● FOSS ecosystem

○ Strategy
○ Key Features
○ Community

2

Mirza Krak

● FOSS enthusiast
● Board Support Package development
● Linux kernel developer
● Yocto/OE-core
● Disclaimer: Mender community member

3

Embedded Linux Devices

4

@internetofshit

Embedded Linux environment

● Remote in some cases
○ No physical access to devices

● Long life span
○ 5-10 years

● Unreliable power supply
○ Power loss at any given time

● Unreliable network
○ Mobile
○ Low bandwidth

5

Why do we need update software?

● Fixing issues (bugs)
● Feature growth
● Security updates

6

Software update on-site

● No connectivity
● Easy access to an device
● USB Flash drive
● Technician

7

Software updates (OTA)

● No easy access to device
● Deployment management server

○ status reports
○ current versions

8

What to we need to update?

9

U-boot

MCU/FPGA

Linux + DTB

Root file-system
(distro)

Root file-system
(apps)

Requirements (basic)

● Able to update all components
○ Unsafe to update bootloader

● Never render the device unusable (brick)
○ Fail-safe

● Atomic updates
○ No partial install

● Roll-back
○ Not always possible

● Integrity check
● Signed images

○ Trusted images
● Compatibility check
● Persistent data storage

10

Requirements (basic OTA)

● Secure communication channel
○ Encrypted

● Device Authentication (trust)

11

Alternative approaches

● Image/block based updates
○ Easy to implement, test, verify and maintain

● Incremental atomic image upgrade mechanism
○ Complexity

● Containers
○ Run applications in containers on device

● Package managers (dpkg, dnf, opkg)
○ Not designed for embedded use-case
○ Not atomic
○ Hard to maintain

12

Image

13

U-boot

MCU/FPGA

Linux + DTB

Root file-system
(distro)

Root file-system
(apps)

Image

14

Root file-system

Linux + DTB Distro Apps

/

MCU/FPGA
FirmwareUpdate client

Asymmetric Image updates

15

Bootloader Recovery OS

Main OS

Persistent data

● Think Android (pre N)
● Fail-safe
● Downsides

○ Downtime
○ Intermediate storage

Symmetric Image updates

16

Bootloader Main OS - A (active)

Persistent data

Main OS - B
(inactive)

● Android (post N)
● Seamless updates
● Fail-safe
● Roll-back
● Downsides

○ Double copy of OS

FOSS ecosystem

17

Frameworks

18

SWUpdate

“SWUpdate is a Linux Update agent with the goal to provide an efficient and safe way to update an
embedded system”

● http://sbabic.github.io/swupdate/
● C & GPLv2
● Update agent on device
● Tooling to create update images (cpio archives)
● Integrated web server for “local updates”
● Symmetric/Asymmetric Image Updates
● Cryptographic signing and verification of updates

19

http://sbabic.github.io/swupdate/

SWUpdate

● NOR / NAND, UBI volumes, SD / eMMC
● UNIX socket interface (status)
● U-boot, grub, EFI
● Yocto

○ meta-swupdate
○ meta-swupdate-boards

● Buildroot
● Integrated support for hawkBit for OTA updates

20

SWUpdate

● Community
○ 18 releases (4 month cycle, 2018.03)
○ 43 contributors
○ swupdate@googlegroups.com (contributions & issues)
○ Reference boards (BBB, RPi3, Wandboard)

21

mailto:swupdate@googlegroups.com

RAUC

“The aim of RAUC is to provide a well-tested, solid and generic base for the different custom
requirements and restrictions an update concept for a specific platform must deal with”

● https://rauc.readthedocs.io/
● C & License LGPLv2.1
● Update agent & host tooling
● Symmetric/Asymmetric Image Updates
● Integrate well with application
● Delta updates (casync)

○ experimental

22

https://rauc.readthedocs.io/

RAUC

● D-Bus interface
● SD/eMMC, UBI, raw NAND
● U-boot, grub, barefox, EFI
● Yocto (meta-rauc) and PTXdist support
● hawkBit client for OTA updates

○ python library

23

RAUC

● Solid test infrastructure
○ 70 % code coverage

● Community
○ 6 releases (v0.4)
○ 24 contributors
○ #rauc on freenode
○ Contributions and issues on Github
○ No reference boards?

24

hawkBit

“Eclipse hawkBit is a domain independent back-end framework for rolling out software updates to
constrained edge devices as well as more powerful controllers and gateways connected to IP based
networking infrastructure.”

● Java & EPL-1.0

25

libostree

“git for operating system binaries”
● https://ostree.readthedocs.io
● C & LGPLv2
● Image updates

○ Binary deltas
● Complex

26

https://ostree.readthedocs.io

libostree

● Structure
○ /ostree/repo
○ /ostree/deploy
○ /ostree/deploy/$OSNAME/$CHECKSUM

● /usr is hard links to deploy directory
○ /usr is read-only

● Never boot to physical rootfs
○ initramfs chroot to “deployment”

● Persistent state in /var

27

libostree

● Target platform: PC running Linux.
● Not 100 % on embedded

○ Only ONE file-system (brickable)
○ OStree is part of the ONE filesystem (brickable)
○ No built-in roll-back logic
○ /etc “merge” not suitable for embedded usage

● Yocto integration
○ meta-updater
○ Raspberry Pi 3

28

libostree

● Gnome Continuous
● Qt OTA
● Flatpak
● Project Atomic
● Aktualizr (GENIVI SOTA)

29

swupd

● Incremental atomic upgrade mechanism
● https://github.com/clearlinux/swupd-client
● https://github.com/clearlinux/swupd-server
● C & GPLv2
● ClearLinux
● Similar to libostree in functionality

○ No required reboot to apply update
● Yocto

○ meta-swupd (inactive)
● Community

○ Intel only

30

https://github.com/clearlinux/swupd-client

End-to-End solutions

31

Mender

“Mender is an end-to-end open source updater for connected devices and IoT”
● https://docs.mender.io/
● Golang & Apache 2.0
● Update agent on device
● Tooling to create update artifacts (mender-artifact)
● Open source management server (backend and frontend)

32

https://docs.mender.io/

Mender

● Symmetric A/B image update
● TLS communication between

client/server
● Streaming of update
● Deployment management
● Device console
● Cryptographic signing and

verification of updates

33

Mender

● Yocto integration
○ meta-mender

● 75 % test coverage on client
● QA (open-source)

○ Integration tests on qemu, Beaglebone Black and RPi3
● Community

○ JIRA - https://tracker.mender.io/projects/MEN/
○ 10 releases (1.4.0)
○ mender@lists.mender.io
○ Contributions on github
○ +30 repos in organization

34

mailto:mender@lists.mender.io

resin.io

“Resin.io brings the benefits of Linux containers to the IoT. Develop iteratively,
deploy safely, and manage at scale.”
● https://docs.resin.io/introduction/
● Proprietary “console” / server

○ Plan to open-source it according to blog
● resinOS

○ open-source

35

https://docs.resin.io/introduction/

resin.io

● resinOS
● Custom container client

○ optimized for embedded Linux
devices

○ container delta updates
● Symmetric A/B image (resinOS)
● Only eMMC/SD support

36

ATS Garage

“ATS Garage is a tool to manage software updates on embedded devices”
● https://github.com/advancedtelematic
● Aktualizr

○ Client, C++, MPL2.0
○ Built on top of libostree

● ATS Garage
○ Device and deployment management
○ proprietary

● OTA Community Edition
○ No stable releases yet
○ MPL2.0

37

Updatehub

“Updatehub provides a generic and safe Firmware Over-The-Air agent for
Embedded and Industrial Linux-based devices.”
● https://github.com/updatehub
● Client and Server Backend under GPLv2

○ Golang
○ HTTP API (actions and status)

● Deployment and device management proprietary?
● Fairly new

○ 1.0.0 released in 2017 Dec

38

https://github.com/updatehub

Summary

● Proven solutions
● No reason to go “homegrown”!
● Collaboration

39

Questions?

?

40

Thank you!

Embedded Linux and beyond
https://mkrak.org

41

https://mkrak.org

